

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

CC5-PHYSICS

MATHEMATICAL PHYSICS-II

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1.	Answer any <i>five</i> questions:		$1 \times 5 = 5$
(a)	What do you mean by singular points of second order diffe	rential equations?	1
(b)	What are the Dirichlet's conditions?		1
(c)	What is the Fourier transform of delta function?		1
(d)	Under which condition Poisson's equation reduces to Lapla	aces equation?	1
(e)	Define gamma functions and write its integral formula.		1
(f)	Solve $\frac{\partial^2 z}{\partial x \partial y} = 0$.		1
(g)	If $\int_{-1}^{+1} P_n(x) dx = 2$, then $n = ?$		1
(h)	Identify the odd function		1
	(i) x^2 (ii) $\sec x$ (iii) $\cos x$	(iv) $\tan x$	

GROUP-B

	Answer any <i>three</i> questions	$5 \times 3 = 15$
2.	If a string is plucked at its mid-point by the displacement ' h ', find the expression for displacement of any point on the string.	5
3.	Show that $2^n \Gamma(n+\frac{1}{2}) = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)\sqrt{\pi}$.	5
4.	Find the Fourier transform of the Gaussian Probability function:	5

 $f(x) = Ne^{-\alpha x^2}$ (N, α are constants)

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC5/2021

5. Show that
$$\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}dx}{(a+x)^{m+n}} = \frac{\Gamma m \ \Gamma n}{a^{n}(1+a)^{m} \Gamma(m,n)}$$
5

6. Evaluate
$$\int_{0}^{\infty} x^{4} e^{-x} dx$$
 and $\int_{0}^{\infty} e^{-4x} x^{5/2} dx$ $2\frac{1}{2} + 2\frac{1}{2}$

GROUP-C

Answer any *two* questions $10 \times 2 = 20$

3

5

7. (a) Find the inverse sine transformation of $e^{-\lambda n}$.

(b) Prove that
$$\int_{-1}^{+1} P_n(x) P_m(x) dx = \frac{2}{2m+1} \delta_{m,n}$$
 4

where $\delta_{m,n}$ is Kronecker delta symbol.

(c) Show that
$$P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$$
.

- 8. (a) Explain physical significance of Fourier transform of a function with example. 2+3 Check the possibilities of Fourier series of f(x) = x(-∞ ≤ x ≤ ∞) on the basis of Dirichlet conditions.
 - (b) Find the Fourier series for the following function

$$f(x) = x + x^2, \ -\pi < x < +\pi$$

9. (a) For the Legendre's polynomials, prove the following recurrence relation

$$(l+1)P_{l+1}(x) - (2l+1)x P_l(x) + l P_{l-1}(x) = 0$$
4

- (b) Show that $e^{x(t-1/t)/2} = \sum_{n=-\infty}^{+\infty} J_n(x) t^n$ and hence deduce the relation 3+3 $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where *n* is any integer.
- 10.(a) Solve Laplace's equation in spherical polar co-ordinates. Hence write down the values of first four spherical harmonics. Discuss the properties of spherical harmonics.
 - (b) Using variational calculations show that the shortest distance joining two points is a straight line.

_×__