

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

CC5-Physics

Mathematical Physics-II

The figures in the margin indicate full marks.
 All symbols are of usual significance.

GROUP-A

1. Answer any five questions: $1 \times 5=5$
(a) What do you mean by singular points of second order differential equations? 1
(b) What are the Dirichlet's conditions? 1
(c) What is the Fourier transform of delta function? 1
(d) Under which condition Poisson's equation reduces to Laplaces equation? 1
(e) Define gamma functions and write its integral formula. 1
(f) Solve $\frac{\partial^{2} z}{\partial x \partial y}=0$.
(g) If $\int_{-1}^{+1} P_{n}(x) d x=2$, then $n=$?
(h) Identify the odd function
(i) x^{2}
(ii) $\sec x$
(iii) $\cos x$
(iv) $\tan x$

GROUP-B

Answer any three questions $\quad 5 \times 3=15$
2. If a string is plucked at its mid-point by the displacement ' h ', find the expression for displacement of any point on the string.
3. Show that $2^{n} \Gamma\left(n+\frac{1}{2}\right)=1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1) \sqrt{\pi}$.
4. Find the Fourier transform of the Gaussian Probability function:

$$
f(x)=N e^{-\alpha x^{2}}(N, \alpha \text { are constants })
$$

5. Show that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1} d x}{(a+x)^{m+n}}=\frac{\Gamma m \Gamma n}{a^{n}(1+a)^{m} \Gamma(m, n)}$
6. Evaluate $\int_{0}^{\infty} x^{4} e^{-x} d x$ and $\int_{0}^{\infty} e^{-4 x} x^{5 / 2} d x$

GROUP-C

Answer any two questions

7. (a) Find the inverse sine transformation of $e^{-\lambda n}$.
(b) Prove that $\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 m+1} \delta_{m, n}$
where $\delta_{m, n}$ is Kronecker delta symbol.
(c) Show that $P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}$.
8. (a) Explain physical significance of Fourier transform of a function with example.

Check the possibilities of Fourier series of $f(x)=x(-\infty \leq x \leq \infty)$ on the basis of Dirichlet conditions.
(b) Find the Fourier series for the following function

$$
f(x)=x+x^{2},-\pi<x<+\pi
$$

9. (a) For the Legendre's polynomials, prove the following recurrence relation

$$
(l+1) P_{l+1}(x)-(2 l+1) x P_{l}(x)+l P_{l-1}(x)=0
$$

(b) Show that $e^{x(t-1 / t) / 2}=\sum_{n=-\infty}^{+\infty} J_{n}(x) t^{n}$ and hence deduce the relation $3+3$ $J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$ where n is any integer.
10.(a) Solve Laplace's equation in spherical polar co-ordinates. Hence write down the values of first four spherical harmonics. Discuss the properties of spherical harmonics.
(b) Using variational calculations show that the shortest distance joining two points is a straight line.

